An optimal multiplier theorem for Grushin operators in the plane, I
نویسندگان
چکیده
Let $\mathcal{L} = -\partial_x^2 - V(x) \partial_y^2$ be the Grushin operator on $\mathbb{R}^2$ with coefficient $V : \mathbb{R} \to [0,\infty)$. Under sole assumptions that $V(-x) \simeq xV'(x)$ and $x^2 |V''(x)| \lesssim V(x)$, we prove a spectral multiplier theorem of Mihlin--H\"ormander type for $\mathcal{L}$, whose smoothness requirement is optimal independent $V$. The assumption second derivative $V''$ can actually weakened to H\"older-type condition $V'$. proof hinges analysis one-dimensional Schr\"odinger operators, including universal estimates eigenvalue gaps matrix coefficients potential.
منابع مشابه
The Hörmander Multiplier Theorem for Multilinear Operators
In this paper, we provide a version of the Mihlin-Hörmander multiplier theorem for multilinear operators in the case where the target space is L for p ≤ 1. This extends a recent result of Tomita [15] who proved an analogous result for p > 1.
متن کاملBilipschitz Embedding of Grushin Plane in R3
The Grushin plane is bilipschitz homeomorphic to a quasiplane in R
متن کاملNon-isotropic Gevrey Hypoellipticity for Grushin Operators
We shall determine non-isotropic Gevrey exponents for general Grushin operators based on the results given in the paper [26], where a method to determine isotropic (worst) Gevrey exponents was given. The ideas of the bracket calculus given in the paper [2] and FBI-transformation given in the paper [5] are also useful.
متن کاملThe Marcinkiewicz Multiplier Condition for Bilinear Operators
This article is concerned with the question of whether Marcinkiewicz multipliers on R2n give rise to bilinear multipliers on R×R. We show that this is not always the case. Moreover, we find necessary and sufficient conditions for such bilinear multipliers to be bounded. These conditions in particular imply that a slight logarithmic modification of the Marcinkiewicz condition gives multipliers f...
متن کاملPullback Attractors for Non-autonomous Parabolic Equations Involving Grushin Operators
Using the asymptotic a priori estimate method, we prove the existence of pullback attractors for a non-autonomous semilinear degenerate parabolic equation involving the Grushin operator in a bounded domain. We assume a polynomial type growth on the nonlinearity, and an exponential growth on the external force. The obtained results extend some existing results for non-autonomous reaction-diffusi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matematica Iberoamericana
سال: 2022
ISSN: ['2235-0616', '0213-2230']
DOI: https://doi.org/10.4171/rmi/1374