An optimal multiplier theorem for Grushin operators in the plane, I

نویسندگان

چکیده

Let $\mathcal{L} = -\partial_x^2 - V(x) \partial_y^2$ be the Grushin operator on $\mathbb{R}^2$ with coefficient $V : \mathbb{R} \to [0,\infty)$. Under sole assumptions that $V(-x) \simeq xV'(x)$ and $x^2 |V''(x)| \lesssim V(x)$, we prove a spectral multiplier theorem of Mihlin--H\"ormander type for $\mathcal{L}$, whose smoothness requirement is optimal independent $V$. The assumption second derivative $V''$ can actually weakened to H\"older-type condition $V'$. proof hinges analysis one-dimensional Schr\"odinger operators, including universal estimates eigenvalue gaps matrix coefficients potential.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hörmander Multiplier Theorem for Multilinear Operators

In this paper, we provide a version of the Mihlin-Hörmander multiplier theorem for multilinear operators in the case where the target space is L for p ≤ 1. This extends a recent result of Tomita [15] who proved an analogous result for p > 1.

متن کامل

Bilipschitz Embedding of Grushin Plane in R3

The Grushin plane is bilipschitz homeomorphic to a quasiplane in R

متن کامل

Non-isotropic Gevrey Hypoellipticity for Grushin Operators

We shall determine non-isotropic Gevrey exponents for general Grushin operators based on the results given in the paper [26], where a method to determine isotropic (worst) Gevrey exponents was given. The ideas of the bracket calculus given in the paper [2] and FBI-transformation given in the paper [5] are also useful.

متن کامل

The Marcinkiewicz Multiplier Condition for Bilinear Operators

This article is concerned with the question of whether Marcinkiewicz multipliers on R2n give rise to bilinear multipliers on R×R. We show that this is not always the case. Moreover, we find necessary and sufficient conditions for such bilinear multipliers to be bounded. These conditions in particular imply that a slight logarithmic modification of the Marcinkiewicz condition gives multipliers f...

متن کامل

Pullback Attractors for Non-autonomous Parabolic Equations Involving Grushin Operators

Using the asymptotic a priori estimate method, we prove the existence of pullback attractors for a non-autonomous semilinear degenerate parabolic equation involving the Grushin operator in a bounded domain. We assume a polynomial type growth on the nonlinearity, and an exponential growth on the external force. The obtained results extend some existing results for non-autonomous reaction-diffusi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matematica Iberoamericana

سال: 2022

ISSN: ['2235-0616', '0213-2230']

DOI: https://doi.org/10.4171/rmi/1374